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This paper considers the barot'ropic stability of an asymmetric zonal current on 
a rotating earth. The current is of hyperbolic tangent form in latitude. For 
this stability problem the neutral wave solutions are found and estimates of the 
growth rates for the unstable waves are obtained from the neutral solutions as 
in earlier investigations by the writer. It is again found that the beta effect 
whichis due to the earth's curvature and rotation tends to stabilize the basic flow. 

The stability of the basic flow is examined for a special case. For this case the 
current is centered at 35 degrees latitude, has a total shear of 30 m see-l and 
a half-width of 550 km. The most unstable waves are found to be wave-numbers 
6 and 7 which amplify by a factor of e in 2.9 days. In  addition, wave-numbers 
5, 8 and 9 are also unstable. The stability of the symmetric jet is also examined 
for a comparable case. It is found that a wider band of wave-numbers is unstable. 
The most unstable wave is wave-number 8 which amplifies by a factor of e in 
2.7 days. 

In conclusion it is noted that these growth rates are slower than the amplifica- 
tion rates for the unstable waves associated with the baroclinic stability problem. 

1. Introduction 
The motivation for this investigation is the problem of the stability of the 

westerly winds in the atmosphere. These winds vary with latitude and height 
and are strongest at the tropopause. When latitudinal variations are considered 
this current has a jet-like appearance with the maximum winds occurring along 
a certain latitude which changes from day to day. For the mean winter circula- 
tion the maximum winds are near 30"N. (Mintz 1955). At present, a solution of 
the three-dimensional stability problem involving continuous variations of the 
basic flow with latitude and height is too complicated for mathematical treat- 
ment. For this reason most investigators have considered one of two approaches. 
The first is to allow the current to vary with height but not latitude. This formu- 
lation is known as the baroclinic stability problem (see Charney 1947; Kuo 1952). 
The other approach is to allow the current to vary with latitude but not height. 
This formulation is known as the barotropic stability problem (Kuo 1949). In  
both cases frictional forces are neglected. 

It is indeed legitimate to ask what relevance these two simplified problems 
have to the more complicated motions that occur in the atmosphere. It is 
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observed that disturbances with many properties of the simplified baroclinic 
waves amplify with time and feed energy into the basic current (see Phillips 
1963). This type of instability appears to be the main mode of instability for the 
large-scale motionsiii the atmosphere. However, the atmosphere also appears to be 
barotropically unstable at times, particularly at 500 mb. For synoptic examples 
of barotropic instability at 500mb see Kuo (1949) and Wiin-Nielsen (1961). 

As in Lipps (1962) we are concerned with the barotropic stability problem. 
This problem has also been considered by Foote & Lin (1951) and Huo (1949, 
1951). These authors show that the barotropic basic current is stable if the 
gradient of absolute vorticity is of one sign throughout the fluid. It is also found 
in the above investigations that the effect of the earth’s rotation is to reduce the 
instability of the basic current. In  this respect the effect of the earth’s rotation 
is similar to that of a density stratification in stabilizing a shearing basic current. 
This latter stability problem has been treated by Drazin (1958) and later investi- 
gators, e.g. Howard (1963). 

Most of the previous studies on barotropic stability have considered the 
stability of a symmetric basic current with a jet-like appearance. These basic 
flows have regions with negative absolute vorticity gradient both to the north 
and to the south of the maximum winds, elsewhere the gradient is positive. 
There is no reason to think that this is the only type of barotropically unstable 
flow to occur in the atmosphere. An unstable jet may have a region of negative 
absolute vorticity gradient only to the north or to the south of the maximum 
winds. Furthermore, an instability may occur in a basic shearing current which 
does not have a jet-like appearance but which has different constant values 
for the velocity to the north and south of the region of strong shear. 

In order to consider the stability characteristics of the latter types of flow we 
study the stability of an asymmetric velocity profile of hyperbolic tangent form 
in latitude. The results of the present investigation will be applied to the case of 
a particular zonal current. Then these results will be compared to the results 
obtained from the analysis of the symmetric jet (Lipps 1962, 1963). 

2. The perturbation equations and boundary conditions 
In  this study the motion is assumed to be horizontal, non-divergent and 

barotropic. The basic flow consists of a fluid current streaming from west to east. 
As in Lipps (1962) we assume that the variation of the basic current occurs in a 
very narrow latitude belt, and that the basic flow is constant on either side of 
this latitude belt. It is therefore legitimate to approximate the spherical 
co-ordinates of the earth by Cartesian co-ordinates x,  y and z directed toward 
the east, north and vertical, respectively (see Long 1960). The corresponding 
velocities are u, v and w. The basic flow is of the form U = U(y). For this velocity 
profile we take U = U, tanh yIL  +- U,, (2.1) 
where U,, L and U, are arbitrary constants which will be specified in any parti- 
cular case. Since the motion is non-divergent and horizontal, we may define 
a stream function for the perturbed flow, 

u = -asl.jay, v = a$/ax. 
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The perturbations must satisfy the two-dimensional vorticity equation as in 
Lipps (1962). This equation takes the form 

(2.2) 

In  this equation a prime denotes a differentiation with respect to y and 
Po = (d/dy) 2w where w is the vertical component of the earth's rotation. As in 
Lipps (1962) we may consider Po to be a constant since the variation of the basic 
flow occurs over a narrow latitude belt. 

This approximation in which the spherical co-ordinates on the earth are 
replaced by Cartesian co-ordinates and Po is considered constant is known as the 
beta-plane approximation in meteorological literature (see Rossby and collabora- 
tors 1939; Lipps 1963; Phillips 1963). A physical interpretation of this approxima- 
tion is that all the effects of the earth's curvature are unimportant except for the 
variation with latitude of the vertical component of rotation, and furthermore 
that this variation may be considered as constant. 

Now we set $(x,y,t) = eia("-coq5(y) so that (2.2) becomes 

where a is the wave-number and c is the phase velocity which may be complex, i.e. 

c = c, + Wi. 
The boundary conditions on q5 are that q5 -+ 0 as y -+ & co. 

we define 
It is convenient to change to non-dimensional variables. For this purpose 

x* = x/L; y" = y/L; t* = tlU,l/L; k = aL, 

Dropping the asterisks equations (2.3) becomes 

The boundary conditions on Q remain the same, namely q5 -+ 0 as y+ If: CO. 

We now show that the solution to (2.5) has a remarkable property. In the 
non-dimensionalized form of U we note that there is either a plus or minus sign 
in front of tanh y depending on whether U, is positive or negative. If we set 
7 = - y, the form of (2.5) remains the same with y replaced by 7. However, the 
form of U given by (2.4) changes to 

Thus the only effect of a reflection of the y-axis is to change the sign of the basic 
velocity. Hence if we have a solution to (2.5) for a particular k2 and a positive U ,  

15-0 
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given by qj+(y) and the phase velocity c+, the solution for the same k2 and U ,  of 

where qj- and c- refer to the solution for the negative U,. This result shows that 
once we find the solution to the stability problem for a positive U ,  we also have 
the solution when U, takes the opposite sign. In  either case the stability of the 
basic flow is the same since the phase velocities are identical. 

opposite sign will be $-(y) = $+( - y), c- = C+, (2.6) 
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FIGURE 1. U = - tanh y. 

Thus as far as the stability analysis is concerned, which sign we take for the 
basic flow is arbitrary. Physically, if we consider U = -tanhy, we are con- 
sidering a basic flow which has a negative absolute vorticity gradient north of 
the region of maximum winds. Likewise, if we consider U = tanhy, we are 
considering a basic flow which has a negative absolute vorticity gradient south 
of the region of maximum winds. There is some evidence to suggest that the 
former case occurs more frequently than the latter case (see Kuo 1949). There- 
fore we choose to take U = - tanh y for the basic flow pattern. 

The non-dimensional basic velocity is shown in figure 1. In  figure 2 we have 
plotted some typical profiles of absolute vorticity. In  this figure the absolute 

vorticity is given by 6-60=PY-U', 
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where &, is the absolute vorticity a t  y = 0 due to the rotation of the earth. It is 
to be noted that for /3 > 4/38, the absolute vorticity profile is monotonic. 
Therefore the flow is stable for these values of p. 

1.5 
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FIGURE 2.  The absolute vorticity profiles associated with U = - tanh y 
for representative values of p1 = 3 % ~ .  

3. The neutral solutions 
We now consider the neutral wave solutions to (2.5). The neutral waves that 

are associated with the stability problem are of most interest and will be the 
major concern of this section. This discussion is similar to that of Lipps (1962). 

Certain neutral waves are relevant to  the stability problem because unstable 
waves exist for adjacent wave-numbers. From these neutral wave solutions i t  
is possible to calculate &lab2 and make an estimate of the amplification rates 
for the unstable waves. This question will be considered in the next section. 

For these neutral waves it can be shown that U = c a t  y = yc where the gradient 
of absolute vorticity given by p - U" vanishes. This result follows since the basic 
velocity is a monotonic function of y (see Foote & Lin 1951). 

With this information we may obtain the values of c for these waves. At 
y = ye where U = c we have c = - tanh yc. Thus setting /3- U f f  = 0 we find 

This equation gives the following three roots for c 
p + q 1  - c y c  = 0. (3.1) 

C1 = (2/J3)COs36, C2 = (2/43)cos(Q6+ 120"), 

where 

(3.2) 
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The first root gives a value for c greater than unity and is spurious since Kuo 
(1949) proves that no values of c exist which are greater than the maximum 
basic velocity. The other two roots give values of c which are of interest. These 
roots are real for 0 < /3 6 4/38 but become complex for larger values of p. Since 
we know that the flow is stable for p > 4/38 it is evident that these two roots are 
no longer relevant for p > 4/38. 

If we set c equal to either c2 or c3 equation (2.5) becomes 

#"+[2sech2y+2ctanhy-2c2-k2]q5 = 0. (3-3) 

I n  this equation c is known. Therefore the problem is to find a value of k2 for 
which a solution of (3.3) exists and to find the form of the solution. For this 
purpose it is convenient to change the independent variable from y to 2 = tanh y. 
Then (3.3) becomes 

\ ,  

k2 + 2c2 - 2cx 
(1 - 22) d,, - 224, + ( 2 - .  1 - 2 2  ) 4 = 0 ,  (3.4) 

where the subscript z denotes differentiation with respect to z. From this equa- 
tion it is evident that 4 has singularities at z = l .  These singularities can be 
removed by a change of the dependent variable 

4 = ( l+x)~"ql -z )*yy ,  (3.5) 

where a: = k2+2c+c2,  a; = k2-2c+c2. 

With this transformation (3.4) becomes 

where = (~(1- ~t2)'/4 - (a1 + a2)/2 + 2 - 2c2 - k2, 

7 = (a1 + 012) (a1 -I- a2 + 2)/4 - 2. 

A solution of the form x = const. exists provided (T and r vanish. It can be 
shown that such a solution does exist when 

a,= 1 + c ,  a 2 =  1-c ,  k 2 =  1-c2. (3.7) 

(3.8) Then q5 is of the form 4 = (1 + ~ ) * ( l + ~ ) (  1 - z)4(l4). 

This method of solution closely parallels that of Drazin (1958). 
The relation k2 = 1 -c2  defines a neutral curve in the (p, k2)-plane since 

c = c (p )  as given by c2 and c3 in equation (3.2). This curve is shown in figure 3. 
For p < 4/38 two neutral waves exist for a given p. The waves with phase velocity 
c2 are along the lower portion of the neutral curve in figure 3 and the waves with 
phase velocity c3 are along the upper neutral curve. At p = 4/38 there is only 
one neutral wave with the phase velocity c = - 3-*. I n  the next section it will 
be shown that waves are amplified for wavelengths between those of the two 
neutral waves. Outside this wavelength band there are only stable waves. Some 
typical values of k2 and c for the neutral waves are given in table 1. 

In addition to these neutral waves which are relevant to the stability problem 
there are two other types of neutral waves. The first type we call the Rossby 
(1939)-Haurwitz (1940) waves. These waves move with phase velocities less than 
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the minimum basic velocity. The second type of neutral waves are those which 
have a continuous spectrum of phase velocities such that U = c for some point 
within the fluid. For a more complete discussion of both types of neutral waves 
see Lipps (1963). 
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0 
- 0.097 
- 0.200 
- 0.322 
- 0.578 
- 0.799 
- 0.885 
- 0.948 
- 1.000 

aqas 
0 +0.318i 

- 0.091 + 0'313i 
- 0.190+0.229i 
- 0.333 + 0.260i 
- 0.866 + Oi 
- 2.96 - 1.19.i 
-7.02 -2.56.1. 
- 19.04 - 3.651 
-a -3.14i 

aciap 
- 0.500 - O i  
1 0.505 - 0'031i 
- 0'525 - 0'068i 
- 0.570 - 0.122i 
- 0.906 - 0'340i 
-2.04 -1.04i 
-4.24 -1.68; 
- 10.6 -2'04i 

-CC -1.57i 

TABLE 1.  Values calculated along the neutral curve in figure 3 

3 J 3 P  
FIGURE 3. Stability of 77 = - tanh y. The solid line is the neutral curve and the dashed 
line is the estimated curve for ci = 0.05. The triangles represent estimates of ci = 0.05 from 
the values of ac,/aP along the neutral curve and the circles represent estimates of ci = 0.05 
from the values of aci/as along the neutral curve. 

4. Amplified waves 
To find c near the neutral curve in figure 3 we may expand c in a Taylor series 

of the form ac ac 
c = c,+-as+-dp+ ...) 

as ap 
where s = - k2 and co, &/as and acjap are evaluated at some point on the neutral 
curve. I n  the following &/as and acjap are calculated from the neutral solution 
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and the higher derivatives are neglected. Thus for points close to the neutral 
curve we should find a good approximation for c. 

To calculate atlas and &lap along the neutral curve we use the approach 
previously given by Lipps (1962). These expressions are given by 

where f$ is the neutral solution given by (3.8). 
Both of these expressions have a singularity in the denominator where U = co 

so that we must integrate around this point in the complex y-plane. To decide 
whether to integrate above or below this point we use the criterion of Foote & 
Lin (1951). By considering the viscous solution in the limit of vanishing viscosity 
they find that the path of integration should be above the point if dU/dy < 0. 
A similar situation holds for the singularity in the numerator of (4.3). 

In  the previous paper (Lipps 1962) it was possible to evaluate the expressions 
(4.2) and (4.3) analytically after changing the variable to z = tanh y. In  the 
present case most of the values must be calculated numerically. An exception is 
the values of acjas and aclap a t  p = 0,  k2 = 1 which can be found analytically. 
The limiting values of acjas and as p+O, k2+0 along the neutral curve 
can also be found analytically. This calculation is given in the Appendix. All 
the computed values of atlas and aclap are shown in table 1. 

The estimated curve for ci = 0-05 shown in figure 3 is found from the values 
of &/as and aclap given in table 1. In  this figure the triangles represent estimates 
of ci = 0.05 from the values of acila/3 along the neutral curve and the circles 
represent estimates of ci = 0-05 from the values of aci/as along the neutral curve. 

It is of interest to note the behaviour of the derivatives &/as and &lap in the 
limit as h?, p-+ 0. From table 1 we see that the imaginary parts of these derivatives 
have finite values in the limit while the real parts do not. Thus in figure 3 the 
ci = 0.05 curve remains a finite distance from the 0rigin.t For the symmetric jet  
discussed in Lipps (1963) neither the real nor the imaginary parts of the corre- 
sponding derivatives acjas and &lax-1 remained finite in the limiting process. 
On the other hand, when a jet in a divergent, barotropic fluid (Lipps 1963) was 
considered, it was found that atlas and aclap had finite real values a t  the origin 
of the (p, k2)-plane. Thus the behaviour of these derivatives at  this point is 
rather critically determined by the details of the stability problem considered. 

It is also of interest to note that for the present basic flow there is only one 
mode of unstable disturbances as determined by the above analysis. In  Lipps 
(1962) there were two modes of unstable waves; namely, the symmetric disturb- 
ances and the antisymmetric disturbances. One could indeed ask whether the 
extremely simple neutral solutions found to equation (3.4) include all the neutral 

7 Drazin & Howard (1962) and Michalke (1964) have treated the present stability 
problem for the case p = 0. Their results imply that the c ,  = 0.05 curve should approach 
the ntwtral curve asymptotically as k2, /3 - 0. 
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waves of interest. If not, other amplified waves could be present. Although no 
proof can be offered, it does not seem likely that other amplified waves are 
present. The reason is that for /3 = 0 equation (3.4) reduces to a form of Legendre’s 
equation. For this case it can be shown that no other neutral wave solutions exist 
and hence no additional amplified waves can be present. Since the effect of /3 is 
stabilizing it seems highly unlikely that for /3 > 0 any new types of unstable waves 
are present. Hence it appears that only one mode of unstable waves exists for the 
present case. 

I( 

0 0.5 
k2 

1 .o 

FIGURE 4. The estimated curve ci versus k2 for /3 = 1/33. The squares represent points 
from the ci = 0.05 curve in figure 3. The dashed lines are the slopes ac,/Zk2 calculated 
from the neutral solutions. The triangle represents an estimate of ci obtained from ac,/@ 
calculated along the neutral curve. 

We now consider ci as a function of k2 for /3 = 3-4 and /3 = 3 x 3-8. For /3 = 3-4, 
the values of ci can be estimated reasonably well and the plot of ci versus k2 is 
shown in figure 4. In  this figure the dashed lines represent the slopes aci/ak2 
calculated at the neutral curve and the triangle has the same meaning as before. 
The squares represent points taken from the ci = 0.05 curve in figure 3. In  figure 5 
is shown the estimated curve for ci as a function of k2 for /3 = 2 x 3-4. It is 
evident that the values of ei cannot be estimated as accurately as for the previous 
case; a reasonable guess for the maximum error is about 35 s/o. 

5. Calculation of the amplification rates for the asymmetric current 

In this section we apply the above theory to calculate the amplification rates 
for a hypothetical basic current in the upper atmosphere. These amplification 
rates will be then compared with those obtained when a similar calculation is 
made for a symmetric jet. 

and the symmetric jet 
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For the present case we consider a basic current of non-dimensional form 
U = -tanhy with the point y = 0 located at 35 degrees North latitude. The 
total velocity shear is taken to be 30msec-I so that IUo( = 15msec-l. At 
35 degrees Po = 1.875 x 10-l1m-1sec-l. Non-dimensional ,4 is taken as 2 x 3-% 
so that the value of L is 5.55 x 105 m. These values of I U,[ and L are of a reasonable 
magnitude to occur in the atmosphere. 

25 
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10 
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k2 
FIGURE 5. The estimated curve of ci versus k2 for ,8 = 2/38. 

The notation is the same as in figure 4. 

Amplification 
n rate (days) 

5 5.6 
6 2.9 
7 2.9 
8 6.7 
9 34.2 

TABLE 3. Amplification rates for 77 = - tanh y 

In  table 2 are shown the amplification rates for the unstable waves. I n  this 
table n is the number of waves around the globe a t  35 degrees latitude and the 
amplification rates are given as the number of days it takes a disturbance to 
amplify by a factor of e. It is noted that the most unstable waves are n = 6 and 
n = 7 which have an e-fold amplification in 2.9 days. Since the data in this table 
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are obtained from figure 5, the values of the amplification rates should be correct 
to within about 25 %. 

The above amplification rates are to  be compared to those obtained for a 
symmetric jet (Lipps 1963, 1963). We consider a basic current of dimensional 
form U = Vsech2y/L+V, with the point y = 0 again located at 35 degrees 
latitude. The velocity shear is taken to be 30 m sec-l. I n  order to find a value for 
the half-width L we define the non-dimensional number B = poL2/V as in 
Lipps (1962). I n  the above case where p = 2 x 3-g this value of /3 is one half the 
critical value of p for which the flow first becomes stable. If we use the same 
criterion here in choosing B we find B = 9. With this value of B, the value of Po 
given above and V = 30msec-l we find L = 7.31 x lo5. 

10 a 

k2 

FIGURE 6. "he estimated curve of ci versus k2 for the symmetric jet 
with B = +. The notation is explained in the text. 

In  figure 6 is shown the non-dimensional graph of ci versus k2 ( k  is again the 
wave-number) for the symmetric jet discussed above. I n  this figure the dashed 
lines are the slopes aci/ak2 calculated from the neutral solutions and the squares 
represent points along the ci = 0.025 curve in figure 5 of Lipps (1963). The 
triangles represent estimates of ci obtained from the derivatives acilaB along 
the neutral curve. 

The amplification rates found in table 3 are obtained from the data in figure 6. 
It is noted that the most unstable wave is wave-number 8 which amplifies by 
a factor of e in 2-7 days. It is also seen that a broader band of wave-numbers are 
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unstable for this basic flow. The maximum error in the magnitudes of the growth 
rates is again estimated to be about 25 %. 

The amplification rates in table 3 are for the symmetric disturbances. In  
addition to these unstable waves the antisymmetric disturbancest are unstable 
for wave-numbers 1 and 2. However, the growth rates of these disturbances are 
very slow and therefore are not included in table 3. 

n 

6 
7 
8 
9 

10 
11 
12 
13 

Amplification 
rate (days) 

7.8 
3.3 
2.7 
3.1 
4.1 
5.7 
9.4 

51-3 

TABLE 3. Amplification rates for the symmetric jet 

6. Summary and conclusions 
In  this paper the barotropic stability of a zonal current of form U = - tanh y 

is studied. In  5 2 the problem is formulated, and the boundary conditions and 
the basic equation to be satisfied by the perturbations are given. It is also shown 
in this section that the stability characteristics of U = tanh y and U = - tanh y 
are identical. 

In  $ 3  the neutral waves are discussed, and the neutral curve in figure 3 is 
obtained. In  $4 the amplified waves are studied by means of the derivatives 
ac/& and &/a/?. From these derivatives the estimated curve for ei = 0.05 in 
figure 3 is found. It is noted that for this basic flow there is only one mode of 
unstable waves. For the symmetric jet Lipps (1962, 1963) there are two modes 
of unstable waves; namely, the symmetric and the antisymmetric disturbances. 

The magnitudes of the growth rates for the asymmetric current and the 
symmetric jet are compared in $ 5 by means of two examples. The first example 
is a U = - tanh y basic flow centred at 35 degrees latitude. The total shear is 
30 m see-l and the half-width L is 5.55 x lo5 m. For this case wave-numbers 5-9 
are unstable. The most unstable disturbances are wave-numbers 6 and 7 which 
have an e-fold amplification in 2-9 days. 

The second example is a symmetric jet centred at 35 degrees with a total 
shear of 30 m see-l and a half-width of 7.31 x lo5 m. In this case wave-numbers 
6-13 are unstable for the symmetric disturbances. The most unstable disturbance 
is wave-number 8 which has an e-fold amplification in 2.7 days. In  addition 
wave-numbers 1 and 2 are unstable for the anti-symmetric disturbances, but the 
growth rates are much slower. 

t It is to be noted that figure 4 in Lipps (1962) for the antisymmetric disturbances is 
in error. The correct form of this figure using the B notation is shown as figure 6 in Lipps 
(1963). 
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From a comparison of the two examples it is seen that the maximum growth 
rates are comparable. However, the symmetric jet appears to be unstable over 
a larger band of wave-numbers and the most unstable wavelength is somewhat 
shorter. (Wave-number 8 is 4100km and wave-numbers 6 and 7 are 5500 and 
47 00 km respectively. ) 

In conclusion it is of interest to compare the growth rate of baroclinic disturb- 
ances with the amplification rates found above. Kuo (1952) calculates the 
growth rates for the unstable waves associated with a basic current which 
increases linearly the height. For a vertical shear of 3 m see-lkm-l (which is 
a shear of 30 m see-l in 10 km) Kuo finds that the most unstable disturbance has 
a wavelength of 4150 km and its growth rate corresponds to an e-fold amplifica- 
tion in 1.45 days. Thus it appears from the above examples that the wavelengths 
of the most unstable barotropic and baroclinic waves are roughly equivalent but 
that the baroclinic disturbances grow much faster than the barotropic 
disturbances. 

The writer wishes to thank Prof. George W. Platzman for reading the manu- 
script and Mrs Della Friedlander for drafting the figures. 
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Force (Contract A F  19(604)-7866) and by the National Science Foundation 
(Grant NSF-GP-471, Technical Report Number 13, December 1963). 

Appendix. The limiting values of ac/as and ac/@ at p = 0, k2 = 0 
In order to calculate ac/as and ac/@ a t  ,!3 = 0, k2 = 0 we take the limit of (4.2) 

and (4.3) as we approach this point along the neutral curve. First it  is noted that 
if we set z = tanh y equations (4.2) and (4.3) become 

H = - 2( 1 - 22)  - 2xc + 262, 

where we have substituted (3.8) for 4 and have cancelled out one factor of U - c  
in the denominators of (A 1) and (A 2 )  since /3 - U" = 0 a t  the point where 
u-c = 0. 

The derivative &/as is considered first. The numerator of (A 1) can be put in 
the form 

(A 3) 
-+Cr(e)+/l (-) 1 - 2  -e dz, 

= (:y 1 l c  - l + E  l + z  

where E << 1. The denominator of &/as can be put in the form 

dzf(6c2--2) (-) l + c  -c n-ifg, 
1 - C  
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where the second term is the contribution from integrating around the singu- 
larity at y = yc, and g is the remainder of the integral above the first two terms. 
The first term becomes 

- l + ~  H s 1-c 

The derivative acps is now found by taking the limit c+  1. During this 
limiting process E is held fixed as a very small, but finite quantity. In the limit 
the numerator becomes 

where f ( E )  is a finite term which is a function of E .  The limit of the denominator 

dz = - 2 + lim 2( 1 + c) ni + c ( E ) .  (A 7) 
H becomes 

lim Jl, ~ (*)-' 
C'- 1 -2-c I f 2  c+- 1 

I n  this expression we have used that lim g = C ( E )  as can be verified directly. 

It now follows that the limiting value of acjas becomes 
e-t-1 

(A 8) 
a C  

lim - = --m-ri. 

The limiting value of ac/ap can be found in a similar fashion. The limiting form 

c+-l as 

of the numerator in (A 2) becomes 

where f is again a finite real term which is a function of E .  I n  the limit ac/a,8 
becomes . ac n 

lirn - - -m-- i ,  r) 

c+-1 ap Y 

The limiting values of ac/as and given by (A 8) and (A 10) are the values 
shown in table 1 for the point p = 0, k2 = 0. 
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